Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Pak J Pharm Sci ; 36(2): 397-407, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37530146

RESUMO

The present study aimed to evaluate the effect of a mouthwash containing a novel compound Chinese herbal medicine (artemisia capillaris, chrysanthemum, honeysuckle, angelica dahurica and asarum sieboldii) on oral ulcers and analyze sub chronic oral toxicity in rats. For efficacy study, mouthwash was administered on the ulcer area twice daily. Compared with the control group, healing time in the test group was shorter and the ulcer area was smaller. Histological analysis showed less inflammatory cell infiltration in the test group. For sub chronic oral toxicity, mouthwash was administered by oral gavage for 93 consecutive days. There were no significant differences in body weight, food consumption or organ coefficients between the test and control groups. Some parameters of haematology and serum chemistry were statistically different but within normal physiological ranges. No obvious abnormalities were found in the necropsies and histopathological observations. In conclusion, the compound Chinese herbal medicine mouthwash promoted oral ulcer healing in rats with no obvious sub chronic toxicity, providing a potential alternative therapeutic strategy for oral ulcers.


Assuntos
Medicamentos de Ervas Chinesas , Úlceras Orais , Ratos , Animais , Ratos Sprague-Dawley , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/toxicidade , Antissépticos Bucais , Úlceras Orais/induzido quimicamente , Úlceras Orais/tratamento farmacológico , Úlcera
2.
Microbiol Spectr ; 10(4): e0104522, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35708336

RESUMO

The persistence of residual bacteria, particularly Enterococcus faecalis, contributes to refractory periapical periodontitis, which still lacks effective therapy. The role of receptor-interacting protein kinase 3 (RIPK3)- and mixed lineage kinase domain-like protein (MLKL)-mediated necroptosis, a highly proinflammatory form of regulated cell death, has recently drawn much attention. However, the role of necroptosis in the pathogenesis of refractory periapical periodontitis remains unclear. We investigated whether the RIPK3/MLKL signaling pathway was activated in periapical lesion specimens obtained from patients diagnosed with refractory periapical periodontitis. RIPK3-deficient mice were then used to determine the role of necroptosis under this condition in vivo. We found that the phosphorylation levels of RIPK3 and MLKL were elevated in periapical lesion specimens of patients with refractory periapical periodontitis. In addition, necroptosis was induced in an E. faecalis-infected refractory periapical periodontitis mouse model, in which inhibition of necroptosis by RIPK3 deficiency could markedly alleviate inflammation and bone destruction. Moreover, double-labeling immunofluorescence suggested that macrophage necroptosis may be involved in the development of refractory periapical periodontitis. Then, we established an in vitro macrophage infection model with E. faecalis. E. faecalis infection was found to induce necroptotic cell death in macrophages through the RIPK3/MLKL signaling pathway, which was markedly alleviated by the RIPK3- or MLKL-specific inhibitor. Our study revealed that RIPK3/MLKL-mediated macrophage necroptosis contributes to the development of refractory periapical periodontitis and suggests that inhibitors or treatments targeting necroptosis represent a plausible strategy for the management of refractory periapical periodontitis. IMPORTANCE Oral infectious diseases represent a major neglected global population health challenge, imposing an increasing burden on public health and economy. Refractory apical periodontitis (RAP), mainly caused by Enterococcus faecalis, is a representative oral infectious disease with considerable therapeutic challenges. The interplay between E. faecalis and the host often leads to the activation of programmed cell death. This study identifies an important role of macrophage necroptosis induced by E. faecalis in the pathogenesis of RAP. Manipulating RIPK3/MLKL-mediated necroptosis may represent novel therapeutic targets, not only for RAP but also for other E. faecalis-associated infectious diseases.


Assuntos
Doenças Transmissíveis , Periodontite Periapical , Animais , Enterococcus faecalis , Macrófagos/metabolismo , Camundongos , Necroptose , Proteínas Quinases/metabolismo
3.
Front Immunol ; 12: 789610, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34970269

RESUMO

The oral microbiome, one of the most complex and intensive microbial ecosystems in the human body, comprises bacteria, archaea, fungi, protozoa, and viruses. Dysbiosis of the oral microbiome is the initiating factor that leads to oral infectious diseases. Infection is a sophisticated biological process involving interplay between the pathogen and the host, which often leads to activation of programmed cell death. Studies suggest that pyroptosis, apoptosis, and necroptosis are involved in multiple oral infectious diseases. Further understanding of crosstalk between cell death pathways has led to pyroptosis, apoptosis, and necroptosis being integrated into a single term: PANoptosis. PANoptosis is a multifaceted agent of the immune response that has important pathophysiological relevance to infectious diseases, autoimmunity, and cancer. As such, it plays an important role in innate immune cells that detect and eliminate intracellular pathogens. In addition to the classical model of influenza virus-infected and Yersinia-infected macrophages, other studies have expanded the scope of PANoptosis to include other microorganisms, as well as potential roles in cell types other than macrophages. In this review, we will summarize the pathophysiological mechanisms underlying inflammation and tissue destruction caused by oral pathogens. We present an overview of different pathogens that may induce activation of PANoptosis, along with the functional consequences of PANoptosis in the context of oral infectious diseases. To advance our understanding of immunology, we also explore the strategies used by microbes that enable immune evasion and replication within host cells. Improved understanding of the interplay between the host and pathogen through PANoptosis will direct development of therapeutic strategies that target oral infectious diseases.


Assuntos
Apoptose , Doenças Transmissíveis/patologia , Doenças da Boca/patologia , Boca/patologia , Necroptose , Animais , Peptídeos Antimicrobianos/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Doenças Transmissíveis/imunologia , Doenças Transmissíveis/metabolismo , Disbiose , Interações Hospedeiro-Patógeno , Humanos , Mediadores da Inflamação/metabolismo , Microbiota , Boca/imunologia , Boca/metabolismo , Doenças da Boca/imunologia , Doenças da Boca/metabolismo , Piroptose , Transdução de Sinais
4.
Trials ; 22(1): 436, 2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34229752

RESUMO

BACKGROUND: Dental pulp necrosis, a common health problem, is traditionally treated with root canal therapy; however, it fails in restoring the vitality of damaged pulp. Most studies regarding regenerative endodontic therapy (RET) are limited to the treatment of immature necrotic teeth. Given that injectable platelet-rich fibrin (i-PRF) has shown great potential in regenerative medicine as a novel platelet concentration, this study is designed to explore whether i-PRF can serve as a biological scaffold, extending the indications for RET and improving the clinical feasibility of RET in mature permanent teeth with pulp necrosis. METHODS: This is a randomised, double-blind, controlled, multicentre clinical trial designed to evaluate the clinical feasibility of RET for mature permanent teeth with pulp necrosis and to compare the efficacy of i-PRF and blood clots as scaffolds in RET. A total of 346 patients will be recruited from three centres and randomised at an allocation ratio of 1:1 to receive RET with either a blood clot or i-PRF. The changes in subjective symptoms, clinical examinations, and imaging examinations will be tracked longitudinally for a period of 24 months. The primary outcome is the success rate of RET after 24 months. The secondary outcome is the change in pulp vitality measured via thermal and electric pulp tests. In addition, the incidence of adverse events such as discolouration, reinfection, and root resorption will be recorded for a safety evaluation. DISCUSSION: This study will evaluate the clinical feasibility of RET in mature permanent teeth with pulp necrosis, providing information regarding the efficacy, benefits, and safety of RET with i-PRF. These results may contribute to changes in the treatment of pulp necrosis in mature permanent teeth and reveal the potential of i-PRF as a novel biological scaffold for RET. TRIAL REGISTRATION: ClinicalTrials.gov NCT04313010 . Registered on 19 March 2020.


Assuntos
Fibrina Rica em Plaquetas , Endodontia Regenerativa , Necrose da Polpa Dentária/diagnóstico por imagem , Necrose da Polpa Dentária/terapia , Humanos , Estudos Multicêntricos como Assunto , Ensaios Clínicos Controlados Aleatórios como Assunto , Regeneração , Tratamento do Canal Radicular
5.
Front Cell Dev Biol ; 9: 661116, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33859987

RESUMO

Dental pulp stem cell (DPSC) transplantation has shown new prospects in dental pulp regeneration, and is of great significance in the treatment of pulpitis and pulp necrosis. The fate and regenerative potential of stem cells are dependent, to a great extent, on their microenvironment, which is composed of various tissue components, cell populations, and soluble factors. N-cadherin-mediated cell-cell interaction has been implicated as an important factor in controlling the cell-fate commitment of mesenchymal stem cells. In this study, the effect of N-cadherin on odontogenic differentiation of DPSCs and the potential underlying mechanisms, both in vitro and in vivo, was investigated using a cell culture model and a subcutaneous transplantation mouse model. It was found that the expression of N-cadherin was reversely related to the expression of odontogenic markers (dentin sialophosphoprotein, DSPP, and runt-related transcription factor 2, Runx2) during the differentiation process of DPSCs. Specific shRNA-mediated knockdown of N-cadherin expression in DPSCs significantly increased the expression of DSPP and Runx2, alkaline phosphatase (ALP) activity, and the formation of mineralized nodules. Notably, N-cadherin silencing promoted nucleus translocation and accumulation of ß-catenin. Inhibition of ß-catenin by a specific inhibitor XAV939, reversed the facilitating effects of N-cadherin downregulation on odontogenic differentiation of DPSCs. In addition, knockdown of N-cadherin promoted the formation of odontoblast-like cells and collagenous matrix in ß-tricalcium phosphate/DPSCs composites transplanted into mice. In conclusion, N-cadherin acted as a negative regulator via regulating ß-catenin activity during odontogenic differentiation of DPSCs. These data may help to guide DPSC behavior by tuning the N-cadherin-mediated cell-cell interactions, with implications for pulp regeneration.

6.
J Appl Oral Sci ; 29: e20200266, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33825761

RESUMO

OBJECTIVES: We analyzed the effects of the Er:YAG laser used with different parameters on dentinal tubule (DT) occlusion, intrapulpal temperature and pulp tissue morphology in order to determine the optimal parameters for treating dentin hypersensitivity. METHODOLOGY: Dentin specimens prepared from 36 extracted human third molars were randomized into six groups according to the treatment method (n=6 each): control (A); Gluma desensitizer (B); and Er:YAG laser treatment at 0.5 W , 167 J/cm2 (50 mJ, 10 Hz) (C), 1 W , 334 J/cm2 (50 mJ, 20 Hz) (D), 2 W , 668 J/cm2 (100 mJ, 20 Hz) (E), and 4 W and 1336 J/cm2 (200 mJ, 20 Hz) (F). Treatment-induced morphological changes of the dentin surfaces were assessed using scanning electron microscopy (SEM) to find parameters showing optimal dentin tubule occluding efficacy. To further verify the safety of these parameters (0.5 W, 167 J/cm2), intrapulpal temperature changes were recorded during laser irradiation, and morphological alterations of the dental pulp tissue were observed with an upright microscope. RESULTS: Er:YAG laser irradiation at 0.5 W (167 J/cm2) were found to be superior in DT occlusion, with an exposure rate significantly lower than those in the other groups (P<0.05). Intrapulpal temperature changes induced by Er:YAG laser irradiation at 0.5 W (167 J/cm2) with (G) and without (H) water and air cooling were demonstrated to be below the threshold. Also, no significant morphological alterations of the pulp and odontoblasts were observed after irradiation. CONCLUSION: Therefore, 0.5 W (167 J/cm2) is a suitable parameter for Er:YAG laser to occlude DTs, and it is safe to the pulp tissue.


Assuntos
Lasers de Estado Sólido , Oclusão Dentária , Dentina , Humanos , Lasers de Estado Sólido/uso terapêutico , Microscopia Eletrônica de Varredura
7.
J. appl. oral sci ; 29: e20200266, 2021. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1180799

RESUMO

Abstract Objectives We analyzed the effects of the Er:YAG laser used with different parameters on dentinal tubule (DT) occlusion, intrapulpal temperature and pulp tissue morphology in order to determine the optimal parameters for treating dentin hypersensitivity. Methodology Dentin specimens prepared from 36 extracted human third molars were randomized into six groups according to the treatment method (n=6 each): control (A); Gluma desensitizer (B); and Er:YAG laser treatment at 0.5 W , 167 J/cm2 (50 mJ, 10 Hz) (C), 1 W , 334 J/cm2 (50 mJ, 20 Hz) (D), 2 W , 668 J/cm2 (100 mJ, 20 Hz) (E), and 4 W and 1336 J/cm2 (200 mJ, 20 Hz) (F). Treatment-induced morphological changes of the dentin surfaces were assessed using scanning electron microscopy (SEM) to find parameters showing optimal dentin tubule occluding efficacy. To further verify the safety of these parameters (0.5 W, 167 J/cm2), intrapulpal temperature changes were recorded during laser irradiation, and morphological alterations of the dental pulp tissue were observed with an upright microscope. Results Er:YAG laser irradiation at 0.5 W (167 J/cm2) were found to be superior in DT occlusion, with an exposure rate significantly lower than those in the other groups (P<0.05). Intrapulpal temperature changes induced by Er:YAG laser irradiation at 0.5 W (167 J/cm2) with (G) and without (H) water and air cooling were demonstrated to be below the threshold. Also, no significant morphological alterations of the pulp and odontoblasts were observed after irradiation. Conclusion Therefore, 0.5 W (167 J/cm2) is a suitable parameter for Er:YAG laser to occlude DTs, and it is safe to the pulp tissue.


Assuntos
Humanos , Lasers de Estado Sólido/uso terapêutico , Microscopia Eletrônica de Varredura , Oclusão Dentária , Dentina
8.
Nan Fang Yi Ke Da Xue Xue Bao ; 39(7): 823-829, 2019 Jul 30.
Artigo em Chinês | MEDLINE | ID: mdl-31340916

RESUMO

OBJECTIVE: To construct antimicrobial peptides with potent antimicrobial activity, low cytotoxicity and efficient killing rate of Streptococcus mutans for prevention and treatment of dental caries. METHODS: We exploited the existing design strategies to modify reutericin 6 or gassericin A produced by Lactobacillus species in the oral cavity based on their cationicity, amphipathicity and α-helical structure. We examined their antimicrobial activities using bacterial susceptibility assay, their cytotoxicity through cytotoxicity assay and their killing rate of Streptococcus mutans with time-kill assay. We further evaluated the candidate derivatives for their killing rate against Streptococcus mutans, their antimicrobial activity against different oral pathogens and the development of drug resistance. RESULTS: We constructed 6 AT-1 derivatives, among which AT-7 showed an MIC of 3.3 µmol/L against Streptococcus mutans, Porphyromonas gingivalis and Actinomyces viscosus with a killing rate of 88.7% against Streptococcus mutans within 5 min. We did not obtain de novo strains of Streptococcus mutans resistant to AT- 7 after induction for 10 passages. CONCLUSIONS: Hydrophobicity and imperfect amphipathic structure are two key parameters that define the antimicrobial potency of the antimicrobial peptides. The imperfectly amphipathic peptide AT-7 shows the potential for clinical application in dental caries treatment.


Assuntos
Cárie Dentária , Anti-Infecciosos , Humanos , Testes de Sensibilidade Microbiana , Peptídeos , Streptococcus mutans
9.
J Periodontal Implant Sci ; 49(3): 138-147, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31285938

RESUMO

PURPOSE: Several studies have shown that the oral cavity is a secondary location for Helicobacter pylori colonization and that H. pylori is associated with the severity of periodontitis. This study investigated whether H. pylori had an effect on the periodontium. We established an invasion model of a standard strain of H. pylori in human periodontal ligament fibroblasts (hPDLFs), and evaluated the effects of H. pylori on cell proliferation and cell cycle progression. METHODS: Different concentrations of H. pylori were used to infect hPDLFs, with 6 hours of co-culture. The multiplicity of infection in the low- and high-concentration groups was 10:1 and 100:1, respectively. The Cell Counting Kit-8 method and Ki-67 immunofluorescence were used to detect cell proliferation. Flow cytometry, quantitative real-time polymerase chain reaction, and western blots were used to detect cell cycle progression. In the high-concentration group, the invasion of H. pylori was observed by transmission electron microscopy. RESULTS: It was found that H. pylori invaded the fibroblasts, with cytoplasmic localization. Analyses of cell proliferation and flow cytometry showed that H. pylori inhibited the proliferation of periodontal fibroblasts by causing G2 phase arrest. The inhibition of proliferation and G2 phase arrest were more obvious in the high-concentration group. In the low-concentration group, the G2 phase regulatory factors cyclin dependent kinase 1 (CDK1) and cell division cycle 25C (Cdc25C) were upregulated, while cyclin B1 was inhibited. However, in the high-concentration group, cyclin B1 was upregulated and CDK1 was inhibited. Furthermore, the deactivated states of tyrosine phosphorylation of CDK1 (CDK1-Y15) and serine phosphorylation of Cdc25C (Cdc25C-S216) were upregulated after H. pylori infection. CONCLUSIONS: In our model, H. pylori inhibited the proliferation of hPDLFs and exerted an invasive effect, causing G2 phase arrest via the Cdc25C/CDK1/cyclin B1 signaling cascade. Its inhibitory effect on proliferation was stronger in the high-concentration group.

10.
Chem Biol Drug Des ; 94(4): 1768-1781, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31207076

RESUMO

Streptococcus mutans (S. mutans) is known to be a leading cariogenic pathogen in the oral cavity. Antimicrobial peptides possess excellent properties to combat such pathogens. In this study, we compared the antimicrobial activity of novel linear reutericin 6- and/or gassericin A-inspired peptides and identified LR-10 as the leading peptide. Antibacterial assays demonstrate that LR-10 is more active against S. mutans (3.3 µM) than many peptide-based agents without resistance selection, capable of killing many oral pathogens, and tolerant of physiological conditions. LR-10 also presented a faster killing rate than chlorhexidine and erythromycin, and appeared to display selective activity against S. mutans within 10 s. S. mutans is usually encased in plaque biofilms. Biofilm inhibitory assays indicated that LR-10 had excellent inhibitory effect on the biofilm formation of S. mutans and biofilm-encased cells in vitro at low concentrations (6.5 µM). Consistent with most peptides, LR-10 kills S. mutans mainly by disrupting the cell membranes. Notably, both hemolytic activity assays and cytotoxicity tests indicated that LR-10 could keep biocompatible at the effective concentrations. Hence, LR-10 could be a good candidate for clinical treatment of dental caries.


Assuntos
Antibacterianos , Biofilmes/efeitos dos fármacos , Cárie Dentária/tratamento farmacológico , Peptídeos , Streptococcus mutans/fisiologia , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Biofilmes/crescimento & desenvolvimento , Humanos , Peptídeos/síntese química , Peptídeos/química , Peptídeos/farmacologia
11.
Clin Oral Investig ; 22(8): 2675-2684, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30238416

RESUMO

OBJECTIVES: The aim of this study was to further evaluate the caries-arresting effectiveness of micro-invasive interventions for non-cavitated proximal caries and analyze their efficacy for caries lesions of different depths. MATERIALS AND METHODS: Randomized clinical trials (RCTs) of micro-invasive interventions for non-cavitated proximal caries were included in this study. We searched the Cochrane Library, PubMed, Embase, and Web of Science on May 25, 2017, without restrictions. After duplicate study selection, data extraction, and risk of bias assessment, a meta-analysis of the odds ratios (OR) with 95% confidence intervals (95% CIs) and a publication bias analysis were conducted using Stata 12.0. RESULTS: After 2195 citations were screened, 8 citations of seven studies with follow-up periods from 12 to 36 months were included. The subgroup analysis showed that resin infiltration and resin sealant, but not glass ionomer cement (GIC), could reduce the caries progression rate (resin infiltration: OR = 0.15, 95% CI 0.09 to 0.24; resin sealant: OR = 0.33, 95% CI 0.19 to 0.58; GIC: OR = 0.13, 95% CI 0.01 to 2.65). Further analysis of their efficacies for caries lesions of different depths indicated that resin infiltration could arrest progression of enamel caries and caries around the enamel-dentin junction (EDJ) (enamel: OR = 0.05, 95% CI 0.01 to 0.35; EDJ: OR = 0.07, 95% CI 0.01 to 0.70). However, when the outer third of the dentin was involved, resin infiltration yielded significantly different results compared with the control group (OR = 0.42, 95% CI 0.16 to 1.10). Resin sealant seemed to be ineffective regardless of the caries depth (enamel: OR = 0.62, 95% CI 0.13 to 3.00; EDJ: OR = 0.44, 95% CI 0.09 to 2.15; dentin: OR = 0.43, 95% CI 0.07 to 2.63). CONCLUSIONS: Resin infiltration is effective in arresting the progression of non-cavitated proximal caries involved in EDJ, while the therapeutic effects of resin sealant for different caries depths still needs to be further confirmed. CLINICAL RELEVANCE: Based on existing evidence, dentists should carefully select appropriate micro-invasive interventions according to the different depths of non-cavitated proximal caries.


Assuntos
Cárie Dentária/terapia , Selantes de Fossas e Fissuras/uso terapêutico , Cárie Dentária/patologia , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto
12.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-777779

RESUMO

@#Dental caries are the most common and widespread biofilm-dependent oral disease. Nanotechnology promises to be a useful strategy for dental caries management by combating caries-related bacteria, decreasing biofilm accumulation, inhibiting demineralization and enhancing remineralization. Many potential applications of nanotechnology in the development of anticaries materials have recently been reported, especially for anticaries adhesive nanomaterials and anticaries nanofilled composite resins. This review summarizes the current progress in the application of functional nanoparticles in the following products: antibacterial nanomaterials, remineralizing nanomaterials and nanodrug delivery systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...